КЛК 'Владминес'
29 Март 2024, 10:50:58 *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
Войти
Лучшие фелинологические организации!
Добавье свою организацию! пока бесплатно!!!
Новости: Прглашаем всех в фотогалерею на нашем форуме
 
   Начало   Помощь Поиск Календарь Галерея  
Страниц: [1]
  Печать  
Автор Тема: New programmable materials can sense their own movements  (Прочитано 1748 раз)
0 Пользователей и 1 Гость смотрят эту тему.
upamfva
Ветеран
********

Кошачьих сил: 135
upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!upamfva is awe-inspiring!
Offline Offline

Сообщений: 2302

Благодарности
-Выражено: 0
-Получено: 0


Просмотр профиля Email
« : 29 Декабрь 2022, 11:03:20 »

New programmable materials can sense their own movements



MIT researchers have developed a method for 3D printing materials with tunable mechanical properties, that sense how they are moving and interacting with the environment. The researchers create these sensing structures using just one material and a single run on a 3D printer.Get more news about High Quality Programmable Robot,you can vist our website!

To accomplish this, the researchers began with 3D-printed lattice materials and incorporated networks of air-filled channels into the structure during the printing process. By measuring how the pressure changes within these channels when the structure is squeezed, bent, or stretched, engineers can receive feedback on how the material is moving.

The method opens opportunities for embedding sensors within architected materials, a class of materials whose mechanical properties are programmed through form and composition. Controlling the geometry of features in architected materials alters their mechanical properties, such as stiffness or toughness. For instance, in cellular structures like the lattices the researchers print, a denser network of cells makes a stiffer structure.

This technique could someday be used to create flexible soft robots with embedded sensors that enable the robots to understand their posture and movements. It might also be used to produce wearable smart devices that provide feedback on how a person is moving or interacting with their environment.

“The idea with this work is that we can take any material that can be 3D-printed and have a simple way to route channels throughout it so we can get sensorization with structure. And if you use really complex materials, then you can have motion, perception, and structure all in one,” says co-lead author Lillian Chin, a graduate student in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

Joining Chin on the paper are co-lead author Ryan Truby, a former CSAIL postdoc who is now as assistant professor at Northwestern University; Annan Zhang, a CSAIL graduate student; and senior author Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science and director of CSAIL. The paper is published today in Science Advances.
Записан
Страниц: [1]
  Печать  
 
Перейти в:  

Powered by MySQL Powered by PHP Powered by SMF 1.1.11 | SMF © 2006, Simple Machines LLC Valid XHTML 1.0! Valid CSS!